文 | 智能相對論
作者 | 陳泊丞
今年以來,MoE模型成了AI行業(yè)的新寵兒。
一方面,越來越多的廠商在自家的閉源模型上采用了MoE架構。在海外,OpenAI的GPT-4、谷歌的Gemini、Mistral AI的Mistral、xAI的Grok-1等主流大模型都采用了MoE架構。
而在國內(nèi),昆侖萬維推出的天工3.0、浪潮信息發(fā)布的源2.0-M32、通義千問團隊發(fā)布的Qwen1.5-MoE-A2.7B、MiniMax全量發(fā)布的abab6、幻方量化旗下的DeepSeek發(fā)布的DeepSeek-MoE 16B等等也都屬于MoE模型。
另一方面,在MoE模型被廣泛應用的同時,也有部分廠商爭先開源了自家的MoE模型。前不久,昆侖萬維宣布開源2千億參數(shù)的Skywork-MoE。而在此之前,浪潮信息的源2.0-M32、DeepSeek的DeepSeek-MoE 16B等,也都紛紛開源。
為什么MoE模型如此火爆,備受各大廠商的青睞?在開源的背后,MoE模型又是以什么樣的優(yōu)勢使各大主流廠商成為其擁躉,試圖作為改變AI行業(yè)的利器?
MoE模型火爆的背后: 全新的AI解題思路
客觀來說,MoE模型的具體工作原理更接近中國的一句古語“術業(yè)有專攻”,通過把任務分門別類,然后分給多個特定的“專家”進行解決。
它的工作流程大致如此,首先數(shù)據(jù)會被分割為多個區(qū)塊(token),然后通過門控網(wǎng)絡技術(Gating Network)再把每組數(shù)據(jù)分配到特定的專家模型(Experts)進行處理,也就是讓專業(yè)的人處理專業(yè)的事,最終匯總所有專家的處理結果,根據(jù)關聯(lián)性加權輸出答案。
當然,這只是一個大致的思路,關于門控網(wǎng)絡的位置、模型、專家數(shù)量、以及MoE與Transformer架構的具體結合方案,各家方案都不盡相同,也逐漸成為各家競爭的方向——誰的算法更優(yōu),便能在這個流程上拉開MoE模型之間的差距。
像浪潮信息就提出了基于注意力機制的門控網(wǎng)絡(Attention Router),這種算法結構的亮點在于可以通過局部過濾增強的注意力機制(LFA, Localized Filtering-based Attention),率先學習相鄰詞之間的關聯(lián)性,然后再計算全局關聯(lián)性的方法,能夠更好地學習到自然語言的局部和全局的語言特征,對于自然語言的關聯(lián)語義理解更準確,從而更好地匹配專家模型,保證了專家之間協(xié)同處理數(shù)據(jù)的水平,促使模型精度得以提升。
基于注意力機制的門控網(wǎng)絡(Attention Router)
拋開目前各家廠商在算法結構上的創(chuàng)新與優(yōu)化不談,MoE模型這種工作思路本身所帶來的性能提升就非常顯著——通過細粒度的數(shù)據(jù)分割和專家匹配,從而實現(xiàn)了更高的專家專業(yè)化和知識覆蓋。
這使得MoE模型在處理處理復雜任務時能夠更準確地捕捉和利用相關知識,提高了模型的性能和適用范圍。因此,「智能相對論」嘗試了去體驗天工3.0加持的AI搜索,就發(fā)現(xiàn)對于用戶較為籠統(tǒng)的問題,AI居然可以快速的完成拆解,并給出多個項目參數(shù)的詳細對比,屬實是強大。
天工AI搜索提問“對比一下小米su7和特斯拉model3”所得出的結果
由此我們可以看到,AI在對比兩款車型的過程中,巧妙地將這一問題拆解成了續(xù)航里程、動力性能、外觀設計、內(nèi)飾設計、智能化與自動駕駛、市場表現(xiàn)與用戶口碑、價格等多個項目,分別處理得出較為完整且專業(yè)的答案。
這便是“術業(yè)有專攻”的優(yōu)勢——MoE模型之所以受到越來越多廠商的關注,首要的關鍵就在于其所帶來的全新解決問題的思路促使模型的性能得到了較為顯著的提高。特別是伴隨著行業(yè)復雜問題的涌現(xiàn),這一優(yōu)勢將使得MoE模型得到更廣泛的應用。
各大廠商爭先開源MoE模型: 解決AI算力荒的另一條路徑
開源的意義在于讓MoE模型更好的普及。那么,對于市場而言,為什么要選擇MoE模型?
拋開性能來說,MoE模型更突出的一點優(yōu)勢則在于算力效率的提升。
DeepSeek-MoE 16B在保持與7B參數(shù)規(guī)模模型相當?shù)男阅艿耐瑫r,只需要大約40%的計算量。而37億參數(shù)的源2.0-M32在取得與700億參數(shù)LLaMA3相當性能水平的同時,所消耗的算力也僅為LLaMA3的1/19。
也就意味著,同樣的智能水平,MoE模型可以用更少的計算量和內(nèi)存需求來實現(xiàn)。這得益于MoE模型在應用中并非要完全激活所有專家網(wǎng)絡,而只需要激活部分專家網(wǎng)絡就可以解決相關問題,很好避免了過去“殺雞用牛刀”的尷尬局面。
舉個例子,盡管DeepSeek-MoE 16B的總參數(shù)量為16.4B,但每次推理只激活約2.8B的參數(shù)。與此同時,它的部署成本較低,可以在單卡40G GPU上進行部署,這使得它在實際應用中更加輕量化、靈活且經(jīng)濟。
在當前算力資源越來越緊張的“算力荒”局面下,MoE模型的出現(xiàn)和應用可以說為行業(yè)提供了一個較為現(xiàn)實且理想的解決方案。
更值得一提的是,MoE模型還可以輕松擴展到成百上千個專家,使得模型容量極大增加,同時也允許在大型分布式系統(tǒng)上進行并行計算。由于各個專家只負責一部分數(shù)據(jù)處理,因此在保持模型性能的同時,又能顯著降低了單個節(jié)點的內(nèi)存和計算需求。
如此一來,AI能力的普惠便有了非??尚械穆窂?。這樣的特性再加上廠商開源,將促使更多中小企業(yè)不需要重復投入大模型研發(fā)以及花費過多算力資源的情況下便能接入AI大模型,獲取相關的AI能力,促進技術普及和行業(yè)創(chuàng)新。
當然,在這個過程中,MoE模型廠商們在為市場提供開源技術的同時,也有機會吸引更多企業(yè)轉化成為付費用戶,進而走通商業(yè)化路徑。畢竟,MoE模型的優(yōu)勢擺在眼前,接下來或許將有更多的企業(yè)斗都會嘗試新的架構來拓展AI能力,越早開源越能吸引更多市場主體接觸并參與其中。
但是,開源最關鍵的優(yōu)勢還是在于MoE模型對當前算力問題的解決?;蛟S,隨著MoE模型被越來越多的企業(yè)所接受并應用,行業(yè)在獲得相應AI能力的同時也不必困頓于算力資源緊張的問題了。
寫在最后
MoE大模型作為當前人工智能領域的技術熱點,其獨特的架構和卓越的性能為人工智能的發(fā)展帶來了新的機遇。不管是應用還是開源,隨著技術的不斷進步和應用場景的不斷拓展,MoE大模型有望在更多領域發(fā)揮巨大的潛力。
MoE模型的本質(zhì)在于為AI行業(yè)的發(fā)展提供了兩條思路,一是解決應用上的性能問題,讓AI有了更強大的解題思路。二是解決算力上的欠缺問題,讓AI有了更全面的發(fā)展空間。由此來看MoE模型能成為行業(yè)各大廠商的寵兒,也是水到渠成的事情。
*本文圖片均來源于網(wǎng)絡
此內(nèi)容為【智能相對論】原創(chuàng),
僅代表個人觀點,未經(jīng)授權,任何人不得以任何方式使用,包括轉載、摘編、復制或建立鏡像。
部分圖片來自網(wǎng)絡,且未核實版權歸屬,不作為商業(yè)用途,如有侵犯,請作者與我們聯(lián)系。
•AI產(chǎn)業(yè)新媒體;
•澎湃新聞科技榜單月度top5;
•文章長期“霸占”鈦媒體熱門文章排行榜TOP10;
•著有《人工智能 十萬個為什么》
•【重點關注領域】智能家電(含白電、黑電、智能手機、無人機等AIoT設備)、智能駕駛、AI+醫(yī)療、機器人、物聯(lián)網(wǎng)、AI+金融、AI+教育、AR/VR、云計算、開發(fā)者以及背后的芯片、算法等。
申請創(chuàng)業(yè)報道,分享創(chuàng)業(yè)好點子。點擊此處,共同探討創(chuàng)業(yè)新機遇!
“創(chuàng)新的速度比創(chuàng)新本身更重要?!卑B ゑR斯克曾這樣說到。近日,由馬斯克所掌舵的特斯拉,在2024年世界人工智能大會上正式推出了第二代Optimus(擎天柱)人形機器人,距離第一代面世,僅過去9個月。加速升級的人形機器人不負所望,成了今年WAIC大會(世界人工智能大會)的一大看點。除此以外,今年的WA
北京時間6月25日凌晨,多個地區(qū)的OpenAI用戶收到了一封來自官方的郵件。郵件顯示:“您所使用的APl流量來自OpenAl目前不支持的地區(qū)。我們將從7月9日開始采取額外措施,阻止來自不在我們支持的國家和地區(qū)列表中的地區(qū)的APl接口?!彼^的API,就是應用程序編程接口。開發(fā)者通過使用OpenAI的
每一次新舊代際轉換時,都會上演這樣的一幕:“暢想很多,落地很少”,AI原生應用似乎也不例外。關于AI原生應用的呼聲已經(jīng)持續(xù)一段時間,但普通用戶對“AI原生”依然陌生。除了新業(yè)態(tài)普及的周期性,AI原生應用的爆發(fā)與否還涉及另一個議題,即怎么降低AI原生應用開發(fā)的難度和門檻。剛剛結束的華為開發(fā)者大會202
近期,蘋果發(fā)布M4芯片,號稱“比當今任何AIPC的任何神經(jīng)引擎都強!”緊隨其后微軟攜“Copilot+PCs”的概念加入AIPC激戰(zhàn)。截至目前,包括聯(lián)想、惠普、華為等多家主流PC廠商在內(nèi),已經(jīng)至少推出了超50款AIPC產(chǎn)品。AI重塑行業(yè)的機遇,誰都不想錯過。對于企業(yè)來說,能否積極擁抱AIPC十分關鍵
蘋果16弄了兩個版本,一個是專門給中國人用的,準備用百度的AI,還要交錢。第二個是全世界都可以用的,用了ChatGPT,包括臺灣、香港、澳門都可以用。以后都這樣了。好,問題就出在這,蘋果和百度的合作出現(xiàn)問題了,新聞連起來看,才能明白其中含義。新聞一:蘋果正在和騰訊、字節(jié)初步接洽,考慮將二者的AI模型
“技術日新月異,人類生活方式正在快速轉變,這一切給人類歷史帶來了一系列不可思議的奇點。我們曾經(jīng)熟悉的一切,都開始變得陌生?!庇嬎銠C之父約翰·馮·諾依曼曾這樣說到。
“人工智能的商業(yè)模式,是要創(chuàng)造一個市場,而非一個算法”。這是世界AI泰斗MichaelI.Jordan的觀點。而當前的全球AI市場,占據(jù)主導地位的中美雙方,卻也走出了兩條截然不同的技術路徑,前者執(zhí)著于前沿技術的探索,后者則發(fā)力應用優(yōu)化和商業(yè)化落地。南轅北轍的兩個方向,或許已經(jīng)無法直接進行排位先后、優(yōu)
智能體進化發(fā)展了一年,現(xiàn)在的RPAAgent迭代到什么程度了?從實在智能最新發(fā)布的實在Agent7.0,看RPAAgent的迭代升級抓取豆瓣信息、自己制作PPT,這款AIAgent真的實現(xiàn)了流程全自動化AIAgent構建到執(zhí)行全自動化,持續(xù)進化RPAAgent再次降低智能體應用門檻實在智能重磅發(fā)布實
崔大寶|節(jié)點財經(jīng)創(chuàng)始人進入2024年,大模型似乎有熄火之勢:資本市場,與之關聯(lián)的概念炒不動了,英偉達股價動輒暴跌重挫,引發(fā)“泡沫戳破”的擔憂;消費市場,BATH們的推新活動少了,產(chǎn)品更新迭代的速度慢了,民眾的關注度降了……熱鬧的大概只剩下兩場酣仗:自5月15日字節(jié)跳動宣布“以厘計費”,打響國內(nèi)大模型
文|智能相對論作者|陳泊丞好消息!你心心念念的事業(yè)單位發(fā)錄取公告了!壞消息!他們沒錄你,錄了個數(shù)字人。圖片來源網(wǎng)絡隨著數(shù)字人技術的突破,越來越多的傳統(tǒng)企業(yè)和機構開始用上了“數(shù)字員工”。甚至很多中國人心心念念的“鐵飯碗”,也被這些數(shù)字人給捧上了。數(shù)字人捧上了“鐵飯碗”簡單翻看一下全國各地事業(yè)單位的“錄
黑芝麻智能敲鐘后,港交所門口又有一些智駕芯片企業(yè)引發(fā)關注。據(jù)悉,近日地平線已通過中國證監(jiān)會IPO備案,擬發(fā)行不超過11.5億股境外上市普通股并在香港聯(lián)合交易所上市,預計籌集約5億美元資金。從天眼查可以了解到,該公司成立于2015年,是一家乘用車高級輔助駕駛(ADAS)和高階自動駕駛(AD)解決方案供
8月21日,萬眾矚目的2024世界機器人大會暨博覽會在北京亦創(chuàng)國際會展中心盛大開幕。這場為期5天,集“展覽”“論壇”“賽事”于一體的機器人盛會,反映了當下機器人領域的繁榮生態(tài)。據(jù)官方統(tǒng)計數(shù)據(jù),今年現(xiàn)場逛展觀眾高達25萬人次,比去年增加25%。機器人行業(yè)有多火?看看2024世界機器人大會火爆程度便可知